Термодинамика линейных необратимых систем
       4. Стационарные неравновесные состояния

     Согласно второму началу термодинамики (1.1) изолированная физико-химическая система с течением времени стремится к состоянию равновесия, характеризуемому максимумом энтропии. Состояние равновесия выступает как своеобразная "приманка" для неравновесных состояний.
     Открытые системы, обменивающиеся веществом и энергией с окружающей средой, также могут стремиться к равновесию. Однако граничные условия, наложенные на систему, не позволят ей достичь равновесия. В то же время открытые системы могут эволюционировать к состояниям, не зависящим от времени. Такие состояния называются стационарными.
     Более точное определение стационарности было дано де Гроотом: термодинамическая система находится в стационарном состоянии j-го порядка, если из N независимых сил, действующих в системе, j искусственно фиксированы (постоянны)
 
а также отсутствуют потоки, сопряжённые с силами, не фиксированными искусственно
 
и все параметры системы принимают постоянные во времени значения. Таким образом, состояние термодинамического равновесия по де Грооту соответствует стационарному состоянию 0-го порядка, поскольку все потоки в состоянии термодинамического равновесия отсутствуют.
     Стационарное состояние, к которому может эволюционировать открытая система, заведомо является неравновесным состоянием, в котором диссипативные процессы происходят с ненулевыми скоростями [4]. Но все величины, описывающие систему (температура, концентрация и др.), перестают в нём зависеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. В разделе "Характеристика производства энтропии" было показано, что в стационарном состоянии производство энтропии неравновесных систем компенсируется отрицательным потоком энтропии из внешней среды:
 
То есть, стационарность диссипативных процессов в системе поддерживается постоянным потоком извне вещества и энергии.